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Asymptotic analysis of the near-wall region of
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High-Grashof-number turbulent natural convection in the vicinity of vertical walls
with heat transfer is analysed asymptotically. The near-wall boundary layer has
a viscosity-influenced inner layer and a fully turbulent outer layer, similar to the
structure of forced convection boundary layers. Scaling laws and wall functions are
found by asymptotic matching of the temperature gradients in the overlap layer.
The temperature wall function then is a simple logarithmic function of wall distance
whereas the velocity profile in the overlap layer is a more complex correlation.
Constants in these wall functions are deduced from high-quality data for large
Grashof numbers. Experimental as well as numerical profiles as a whole are very
well reproduced by the combination of wall functions and viscous sublayer profiles.
Therefore these new asymptotic profiles can be used in CFD codes to avoid very fine
grids close to the wall, when Grashof numbers are high.

1. Introduction
Turbulent natural convection along vertical walls is a frequently encountered flow

situation for example in air conditioning of buildings, cooling of electronic devices
or nuclear power plants. Often Grashof numbers are very large for these flows. Here,
the Grashof number is Gr = gβ�T h3/ν2, with g being the gravitational accelaration,
β the thermal expansion coefficient, �T a characteristic temperature difference, h

a geometrical length scale (channel height or distance along the plate) and ν the
kinematic viscosity. Alternatively the Rayleigh number Ra = GrP r can be used with
the molecular Prandtl number Pr = ν/a and the thermal diffusivity a.

For an asymptotic analysis (Gr → ∞ or Ra → ∞) of such flows it is important
to have high-quality experimental and/or numerical data to validate the proposed
functions and to obtain the model constants involved. There are three standard
geometries with heat transfer at vertical walls. One is a vertical channel of infinite
extent between a heated and a cooled wall, see figure 1(a). This simple geometry has
been extensively investigated using direct numerical simulation (DNS) by Versteegh &
Nieuwstadt (1999), Boudjemadi et al. (1997) and Wang, Fu & Zhang (2002) and
experimentally by Betts & Bokhari (2000). The second standard geometry is a hot
vertical plate in an environment at rest, studied by e.g. Tsuji & Nagano (1988a, b),
Tsuji, Nagano & Tagawa (1991), and Cheesewright (1968) and for non-Boussinesq
conditions by Siebers, Moffatt & Schwind (1985), see figure 1(b). The third standard
geometry is that of a cavity with sidewalls at different temperatures and a small
aspect ratio as studied by Ampofo & Karayiannis (2003) and Cheesewright, King &
Ziai (1986). All experimental and numerical data used in our study are for air with a
Prandtl number Pr = 0.71.
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Figure 1. Natural convection along walls with heat transfer: (a) vertical channel of infinite
extent (one-dimensional flow and temperature field) for example investigated by Versteegh &
Nieuwstadt (1999); (b) hot vertical plate, measured by Tsuji & Nagano (1988a, b), Tsuji et al.
(1991).

The first and often cited wall function approach for turbulent natural convection
flows was by George & Capp (1979). They obtained a one-third power-law for
temperature as well as velocity profiles after asymptotic matching of adjacent layers.
The temperature profile was confirmed by Versteegh & Nieuwstadt (1999) and
Henkes & Hoogendoorn (1990), for example. The velocity profile, however, was
found to be inappropriate. Some shortcomings of this model will be discussed in § 4.

In a different approach, Yuan, Moser & Suter (1993) obtained wall functions by
curve fitting the data of Tsuji & Nagano (1988a). Their functions, motivated by
dimensional analysis considerations, are in good agreement with these data. There is,
however, no asymptotic background for the correlations and thus no justification for
applying them at higher Grashof numbers.

In our study, § 2, the temperature field is analysed asymptotically, i.e. for Gr → ∞.
An expression for the near-wall region as well as for the overlap layer is given. Using
these results for the temperature field the velocity field can be found next, § 3, by
integrating the momentum equation. In § 4 the wall functions of George & Capp
(1979) will be discussed and compared to the functions we suggest as an alternative.

With an extension to mixed convection in mind our strategy is to treat natural
convection flows in a way as similar as possible to that for forced convection flows.

2. Temperature profile
Our general approach for the natural convection temperature profile is very similar

to the asymptotic analysis of forced convection flow fields. That analysis for high
Reynolds numbers eventually leads to the well-known and widely accepted logarithmic
law of the wall for turbulent velocity profiles. Though alternative approaches for
forced convection end up with a power-law behaviour (cf. Barenblatt 1993a, b)
highly sophisticated experiments by Zanoun, Durst & Nagib (2003) corroborate
the logarithmic law. These logarithmic laws of the wall are implemented in almost
all CFD codes for wall functions in order to avoid excessive grid refinement close to
rigid boundaries. Avoiding terms ‘right or wrong’ we prefer the logarithmic law of
the wall since it is well founded on asymptotic matching arguments.
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Figure 2. Two-layer structure of the natural convection near-wall region.

In what follows we analyse the temperature and velocity profiles of turbulent
natural convection flows as closely as possible along those lines of argument that lead
to the logarithmic law of the wall with forced convection flows. For reasons explained
later we base our analysis on the Boussinesq approximation (constant properties with
the exception of the density as a linear function of temperature, i.e. ρ(T ), in the
buoyancy term). Table 1 below summarizes details of this approach.

The near-wall region of turbulent natural convection can generally be described by

0 =
∂

∂y

(
ν
∂u

∂y
− u′v′

)
+ gβ(T − T0), (2.1)

0 =
∂

∂y

(
a
∂T

∂y
− v′T ′

)
, (2.2)

see for example Tsuji & Nagano (1988a). Here, y is the coordinate normal to the wall,
u the time-averaged velocity parallel to the wall, T the time-averaged temperature,
T0 a reference temperature, −u′v′ the Reynolds stress and −v′T ′ the turbulent heat
flux. Due to the buoyancy term in the momentum equation (2.1) the two equations
are linked.

First, we analyse the temperature profile assuming a two-layer structure with an
inner layer and an outer layer, see figure 2. In the inner layer both modes of heat
transfer, molecular and turbulent, are present. The outer layer is fully turbulent and
therefore only the turbulent heat flux has to be accounted for. The heat flux in both
layers is constant and equal to the wall heat flux, i.e.

a
∂T

∂y
− v′T ′ = a

∂T

∂y

∣∣∣∣
w

= const. (2.3)

Here, a ∂T /∂y is the molecular and −v′T ′ the turbulent heat flux. Both together
are equal to a ∂T /∂y|w , characterizing the heat transfer situation. Therefore a
characteristic temperature Tc should be based on this quantity. Furthermore, the
fluid properties a (or equivalently ν = aPr) and gβ appear in (2.1) and (2.2) and
therefore are appropriate for the definition of a characteristic temperature. Thus we
obtain

Tc =

(
a2

gβ

∣∣∣∣∂T

∂y

∣∣∣∣
3

w

)1/4

(2.4)
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The temperature difference† between the hot wall and the fluid away from it
generally is Th − T = f (y, h, Tc, |∂T /∂y|w). Since for Gr → ∞ the thickness of the
inner layer goes to zero, the finite geometrical length h has no influence, so that
Th − T = f (y, Tc, |∂T /∂y|w). From dimensional arguments we conclude that the scale
δ of the inner layer should be

δ =
Tc

|∂T /∂y|w
. (2.5)

Thus, in non-dimensional variables Θ× ≡ (Th − T )/Tc and y× ≡ y/δ the temperature
takes the form

Θ× = f (y×). (2.6)

The outer layer, at least in its outer part, is affected by the geometrical length scale
of the combined temperature and flow field, h, so that the outer non-dimensional wall
distance should be η ≡ y/h. Hence in the outer layer Θ× takes the form

Θ× ≡ Th − T

Tc

= F (η). (2.7)

The temperature is non-dimensionalized with Tc in both layers since Tc (i.e. basically
the wall heat flux) is the characteristic scale for the whole temperature field. In natural
convection flows driven by wall heat transfer, temperature and velocity fields only
exists as long as Tc �= 0 and they vanish for Tc → 0.

The inner and outer layers merge in an overlap layer in which both scalings
are valid and a kind of matching, which was first introduced by Millikan (1938),
can be applied. Gradients in this overlap layer scale with an intermediate variable
ŷ = y/(h1−αδα) with 0 � α � 1, i.e. η � ŷ � y×, see for example Schlichting & Gersten
(2003). Temperature gradients, approaching the overlap layer from both sides, should
be the same ∂Θ×/∂ŷ, i.e.

∂Θ×

∂ŷ
= lim

y×→∞

∂Θ×(y×)

∂y×
∂y×

∂ŷ
= lim

y×→∞

h1−αδα

δ

∂Θ×(y×)

∂y× , (2.8)

∂Θ×

∂ŷ
= lim

η→0

∂Θ×(η)

∂η

∂η

∂ŷ
= lim

η→0

h1−αδα

h

∂Θ×(η)

∂η
. (2.9)

Equating the two expressions leads to

lim
y×→∞

y× ∂Θ×(y×)

∂y× = lim
η→0

η
∂Θ×(η)

∂η
(2.10)

when both sides are multiplied by y.
In general, (2.10) can only be fulfilled if both sides have the same constant value

C. Therefore

lim
y×→∞

∂Θ×(y×)

∂y× =
C

y× (2.11)

which, after an integration over the inner layer, leads to

lim
y×→∞

Θ× = C ln(y×) + D. (2.12)

† For a positive temperature difference one has to distinguish between hot and cold walls.
Without loss of generality we use the temperature difference between the hot wall Th and the fluid
T so that (Th − T ) > 0.
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Forced convection Natural convection
Re → ∞ Gr → ∞

Governing equation ν
∂u

∂y
− u′v′ = ν

∂u

∂y

∣∣∣∣
w

a
∂T

∂y
− v′T ′ = a

∂T

∂y

∣∣∣∣
w

Characteristic parameter ν
∂u

∂y

∣∣∣∣
w

=
τw

ρ
a

∂T

∂y

∣∣∣∣
w

=
qw

ρcp

Reference quantity uτ ≡

√
ν
∂u

∂y

∣∣∣∣
w

=

√
τw

ρ
Tc ≡

(
a2

gβ
·
∣∣∣∣∂T

∂y

∣∣∣∣
3

w

)1/4

=

([
qw

ρcp

]3
1

agβ

)1/4

Parameters u = f (y, h, uτ , ∂u/∂y|w) Th − T = f (y, h, Tc, |∂T /∂y|w)

Inner layer u = f (y, uτ , ∂u/∂y|w) Th − T = f (y, Tc, |∂T /∂y|w)

y+ =
y

δ
; δ =

uτ

∂u/∂y|w
y× =

y

δ
; δ =

Tc

|∂T /∂y|w
u+ =

u

uτ

Θ× =
Th − T

Tc

Outer layer u = F (y, h, uτ ) Th − T = F (y, h, Tc)

η =
y

h
η =

y

h

u+ =
u

uτ

Θ× =
Th − T

Tc

Table 1. Inner- and outer-layer scaling for velocity (Re → ∞) and temperature (Gr → ∞)

Also Tsuji & Nagano (1988a) as well as Siebers et al. (1985) used logarithmic profiles.
Their non-dimensionalization, however, was different and they gave no justification
for that kind of profile.

The procedure to determine Θ×(y×) for Gr → ∞ is very similar to how u+(y+) is
found for forced convection turbulent flows in the limit of Re → ∞, as can be seen
from table 1. For a detailed derivation of the law of the wall for forced convection
see Schlichting & Gersten (2003) or Craft et al. (2002).

2.1. Viscous sublayer

For the region very close to the wall an explicit formulation can be found since there
the turbulent heat flux is suppressed by the wall (−v′T ′ = 0). The energy equation
reduces to

∂T

∂y
=

∂T

∂y

∣∣∣∣
w

(2.13)

and can be integrated directly, shown again here, without loss of generality for a hot
wall:

Th − T =

∣∣∣∣∂T

∂y

∣∣∣∣
w

y. (2.14)

Its non-dimensional form is

Θ× = y×. (2.15)

2.2. Comparison of temperature profiles

In figure 3 DNS temperature data for the infinite channel are plotted in Θ×, y×

variables and compared to (2.12) and (2.15). The data agree very well with the linear
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Figure 3. DNS temperature data from Versteegh & Nieuwstadt (1999) for the infinite channel:
Ra = 5.4 × 105 (�), Ra = 8.2 × 105 (�, shifted by 1), Ra = 2.0 × 106 (×, shifted by 2) and
Ra = 5.0 × 106 (+, shifted by 3). Also the profiles in the viscous sublayer Θ× = y× (broken
line) and in the overlap layer Θ× = C ln(y×) + D (solid line) are plotted. Due to small
Rayleigh numbers each curve has its own value of C and D. The inset shows an extrapolation
for 106/Ra → 0 leading to C∞ = 0.427 (�) and D∞ = 1.93 (�).

temperature profiles in the viscous sublayer. In the overlap layer the data can be
fitted almost perfectly to logarithmic curves when the constants C and D are adjusted
individually for each curve, i.e. when C and D depend on the Rayleigh number. This,
however, is not acceptable for a general asymptotic wall function. Obviously Rayleigh
numbers of the DNS solutions are not yet high enough to show a perfect asymptotic
behaviour (Ra → ∞). Therefore we extrapolated the results in figure 3 towards
Ra → ∞ or, equivalently, towards 106/Ra → 0 as shown in the inset of figure 3. From
that we find C∞ = 0.427 and D∞ = 1.93. These C∞ and D∞ should be the asymptotic
constants for all natural convection flows along vertical walls in the limit Ra → ∞ or
Gr → ∞. Thus we postulate a general overlap-layer temperature profile

Θ× = 0.427 ln(y×) + 1.93. (2.16)

Its general validity should be checked by comparing the asymptotic profile with
experimental data for various other natural convection flows.

Then, however, one has to carefully take into account that (2.16) holds under the
assumption of constant properties (Boussinesq approximation). Also DNS data were
generated for a constant-property fluid. Measurements, however, are always subject
to property variations due to non-constant temperatures. For example, in the data of
Tsuji & Nagano (1988a), shown later in figure 4, the thermal diffusivity a changes
from 217.3 m2 s−1 (17 ◦C) to 271.3 m2 s−1 (60 ◦C), i.e. by about 30% in the temperature
range of their measurements.
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Figure 4. Temperature data from Betts & Bokhari (2000) for Ra = 1.43 × 106 (�), from
Ampofo & Karayiannis (2003) for Ra = 1.59 × 109 (�), from Tsuji & Nagano (1988a) for
Grx = 1.55 × 1010 (�), Grx = 3.62 × 1010 (�), Grx = 7.99 × 1010 (�), Grx = 8.44 × 1010 (�),
Grx = 8.99 × 1010 (×), Grx = 17.97 × 1010 (+) and from Cheesewright (1968) for Grx =
8.65 × 1010 (�). To avoid confusion subsequent data sets are shifted by one temperature unit.
Here Grx = gβ�T x3/ν2 with x being the distance from the leading edge of the vertical plate.

With DNS data of a constant-property analysis, we have to account for variable-
property effects in the measured data, before we compare them to the DNS data.
Since temperature gradients are very steep close to the wall, properties are almost
constant away from the wall with the values of the bulk flow (index: 0). We therefore
only account for the special situation with respect to the property behaviour at
the wall (index: w). We do this by multiplying measured temperature gradients at
the wall by aw/a0, which is the ratio of the thermal diffusivity at the wall and
at bulk temperatures. We then have the fictitious temperature gradient that would
exist if properties were constant (corresponding to the wall heat flux density of the
experiment). This gradient must be used when comparing measured data to (2.16). It
is incorporated in Tc according to (2.4) which now reads

Tc =

(
a2

0

gβ

[
aw

a0

∣∣∣∣∂T

∂y

∣∣∣∣
w

]3
)1/4

(2.17)

and in y× which now becomes

y× =
y

Tc

(
aw

a0

∣∣∣∣∂T

∂y

∣∣∣∣
w

)
. (2.18)

In figure 4 data from various natural convection flows are shown. Since variable-
property effects are present in the viscous sublayer but not in the bulk, a correction
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Figure 5. Temperature profiles near the wall for Grx = 8.44 × 1010 measured by two different
methods taken from Tsuji & Nagano (1988a). Thermocouple (solid line) and cold wire (�)
measurements with temperature gradients ∂T /∂y|w deviating by 12%.

factor a0/aw explicitly appears in Θ× when measured data are compared to the
constant-property asymptotic sublayer profile (2.15). Logarithmic behaviour is clearly
shown, with the exception of the two lowest-Rayleigh-number data sets which
obviously are still far away from an universal asymptotic behaviour.

Measured data in all these cases have to be analysed very carefully and error
estimates are crucial. As an example figure 5 shows temperature data close to the
wall from Tsuji & Nagano (1988a), measured by two different methods. Gradients
vary by about 12% with error margins necessarily being even higher.

3. Velocity profile
The momentum equation for turbulent natural convection in the near-wall region,

(2.1), is repeated here for convenience:

0 =
∂

∂y

(
ν
∂u

∂y
− u′v′

)
+ gβ(T − T0). (3.1)

Integrating (3.1) twice leads to the velocity profiles in the viscous sublayer as well as
in the overlap layer.

3.1. Velocity profile in the viscous sublayer

Very close to the wall in a purely viscous sublayer turbulent stresses −u′v′ are absent
due to wall damping of the velocity fluctuations. Here, the non-dimensionalized
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velocity profile U× = u/uc can be obtained by inserting Θ× = y×, −u′v′ = 0 and
Θ×

0 = (Th − T0)/Tc in the non-dimensional form of (3.1). Integration yields

U× =
1

6
y×3 − 1

2
Θ×

0 y×2 +
∂U×

∂y×

∣∣∣∣
w

y× (3.2)

with the characteristic velocity

uc ≡ gβT 3
c

ν

∣∣∣∣∂T

∂y

∣∣∣∣
−2

w

. (3.3)

The profiles for U× and Θ× in the viscous sublayer, (3.2) and (2.15), are the same
as those in George & Capp (1979) or Henkes & Hoogendoorn (1990), for example.
The overlap-layer profiles, however, are different. That for the temperature has been
provided by (2.16), the velocity profile will be deduced next.

3.2. Velocity profile in the overlap layer

A straightforward approach for the velocity profiles, adopted by George & Capp
(1979), for example, would be to match velocity gradients in the overlap layer, see
figure 2. As shown by Versteegh & Nieuwstadt (1999) this, however, leads to an
insufficient representation of the flow field.

Alternatively, the momentum equation can be the starting point for determining
the asymptotic form of the flow field. Since matching occurs in the overlap layer, the
momentum equation can be taken as that of the inner layer, i.e. (3.1), neglecting the
viscosity influence, which ‘dies out’ further away from the wall. Hence we have

0 = −∂u′v′

∂y
+ gβ(T − T0). (3.4)

Since we want to find an asymptotic representation for the time-mean velocity u,
turbulence closure is required. This can be applied on various levels and will provide
an asymptotic representation of u based on turbulence closure according to that level.

Since most CFD codes (in which wall functions should be implemented) use an
eddy-viscosity turbulence closure we adopt this and in non-dimensional form obtain

0 =
∂

∂y×

(
νt

ν

∂U×

∂y×

)
− Θ× + Θ×

0 (3.5)

from (3.4).
Solution of this equation is straightforward once Θ×(y×) and νt (y

×) are known. In
§ 2 an expression for Θ×(y×) in the overlap layer was derived and can be applied,
see (2.12). The eddy viscosity νt (y

×) can be linked to the turbulent thermal diffusivity
at (y

×) by the turbulent Prandtl number σt = νt/at through

νt

ν
=

at

a

σt

Pr
. (3.6)

When σt is known the set of equations is closed and can be solved. We now assume
the temperature fluctuations to be those of a passive scalar what reasonably accounts
for the physics of buoyancy-induced turbulence. Since then at is intimately linked
to νt (both coefficients are the mean flow and mean temperature representation of
turbulence effects) their ratio will be (almost) constant.

As an example, the inset in figure 7 below shows a plot of the turbulent
Prandtl number σt obtained from the DNS data of Versteegh & Nieuwstadt (1999).
Experimental data (e.g. Tsuji & Nagano 1988a) show too high fluctuations in the
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measured gradients to be used here. For y× � 9 the turbulent Prandtl number is
almost constant with σt ≈ 0.9 like in many forced convection flows. The singular
behavior of σt near the wall (where ∂u/∂y = 0 but ∂T /∂y �= 0) does not pose a
problem since it is not in the y×-range of interest. Thus, the constant-turbulent-
Prandtl-number concept, here with σt = 0.9, is used for natural convection in the
overlap layer.

With at = −v′T ′/(∂T /∂y), assuming that at � a in the overlap layer the energy
equation (2.3) in non-dimensional form is

at

a

∂Θ×

∂y× = 1. (3.7)

With ∂Θ×/∂y× = C/y× according to (2.11) we thus immediately find at/a = y×/C

and therefore
νt

ν
=

σty
×

CPr
. (3.8)

Inserting (3.8) and (2.12) into the momentum equation (3.5), it becomes

∂

∂y×

(
σty

×

CPr

∂U×

∂y×

)
= C ln(y×) + D − Θ×

0 . (3.9)

It can be integrated twice with respect to y× and leads to the velocity profile in the
overlap layer:

U× =
CPr

σt

y×
(

C[ln(y×) − 2] + D − Θ×
0

)
+ E ln(y×) + F (3.10)

Though E and F are constants with respect to y× they may depend on parameters
like Θ×

0 and the wall gradient ∂U×/∂y×|w , which both are parameters in the non-
dimensional form of the velocity distribution (3.2) in the viscous sublayer. Since Θ×

0

appears in U× already, see (3.10), we tentatively assume E and F to be parametrically
dependent on ∂U×/∂y×|w only, with the simple form E = e1∂U×/∂y×|w + e2 and
F = f1∂U×/∂y×|w + f2.

3.3. Comparison of velocity profiles

In order to end up with general asymptotic wall functions, E and F in (3.10) have
to be determined. We do that by adjusting them to experimental velocity data (flat
plate, cavity, figure 6) and then demonstrate that they also hold for DNS solutions
(infinite channel, figure 7).

Again the problem arises that experiments are always subject to variable-
property effects whilst DNS data assume constant-property physics (Boussinesq
approximation).

As for the temperature profile we therefore assume a bulk value for the kinematic
viscosity, ν0, further away from the wall (i.e. in the overlap layer) and a factor
ν0/νw appears in the representation of the velocity profile in the sublayer when it is
compared to experimental data. Instead of (3.2) we then have

U× =
ν0

νw

(
1

6

a0

aw

y×3 − 1

2
Θ×

0 y×2

)
+

∂U×

∂y×

∣∣∣∣
w

y× (3.11)

with the characteristic velocity uc as

uc =
gβT 3

c

ν0

(
aw

a0

∣∣∣∣∂T

∂y

∣∣∣∣
w

)−2

(3.12)
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Figure 6. Velocity data from Betts & Bokhari (2000) for Ra = 1.43×106 (�), from Ampofo &
Karayiannis (2003) for Ra = 1.59×109 (�), from Tsuji & Nagano (1988a) for Grx = 1.55×1010

(�), Grx = 3.62 × 1010 (�), Grx = 7.99 × 1010 (�), Grx = 8.44 × 1010 (�), Grx = 8.99 × 1010

(×), Grx = 17.97×1010 (+) and from Cheesewright (1968) for Grx = 8.65×1010 (�). To avoid
confusion subsequent data sets are shifted by five velocity units.

and Tc according to (2.17).
Figure 6 shows measured flat-plate and cavity data from which

E = 0.49
νw

ν0

∂U×

∂y×

∣∣∣∣
w

− 2.27 , (3.13)

F = 1.28
νw

ν0

∂U×

∂y×

∣∣∣∣
w

+ 1.28 (3.14)

are determined by adjusting the overlap layer profile (3.10) taking variable-property
effects into account. Only for the lowest Rayleigh numbers is (3.10) a poor
representation of the experimental data, as previously obtained for the temperature
profile. Viscous sublayer profiles compared to (3.11) show good agreement.

Applying E and F according to (3.13) and (3.14), the infinite channel DNS data, see
figure 7, are represented quite well for the high-Rayleigh-number cases. The viscous
sublayer is now compared to (3.2) since DNS data are for constant properties.

Table 2 summarizes the near-wall analytical functions (2.12), (2.15), (3.2) and (3.10)
and the constants therein.

Cheesewright (1986) as cited in Henkes & Hoogendoorn (1990) also proposed a
logarithmic temperature wall function and a velocity profile similar to (3.10). This,
however, is based on a different non-dimensionalization of the basic equations.
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Figure 7. DNS velocity data from Versteegh & Nieuwstadt (1999) for the infinite channel:
Ra = 5.4 × 105 (�), Ra = 8.2 × 105 (�, shifted by 2), Ra = 2.0 × 106 (×, shifted by 4)
and Ra = 5.0 × 106 (+, shifted by 6). The inset shows σt = νt/at as a function of y× for
Ra = 5.0 × 106 where σt ≈ 0.9 for y× > 9.

Layer Temperature Θ× Velocity U×

Viscous sublayer y× 1

6
y×3 − 1

2
Θ×

0 y×2 +
∂U×

∂y×

∣∣∣∣
w

y×

Overlap layer C ln(y×) + D
CPr

σt

y×

(
C[ln(y×) − 2] + D − Θ×

0

)
+ E ln(y×) + F

with:
C D E F

0.427 1.93 0.49
∂U×

∂y×

∣∣∣∣
w

− 2.27 1.28
∂U×

∂y×

∣∣∣∣
w

+ 1.28

Table 2. Analytical functions for temperature and velocity in the viscous sublayer and the
overlap layer of turbulent natural convection flows (constant properties). The functions shown
above in the overlap layer can be used as wall functions in CFD codes.

4. Wall functions by George & Capp
The study of George & Capp (1979) is frequently referred to as a ‘standard’ when

wall functions for turbulent natural convection are used, see for example Schlichting &
Gersten (2003).

Like in our study George & Capp (1979) subdivided the natural convection
boundary layers into an inner layer (molecular and turbulent transport) and an
outer layer with only turbulent transport of momentum and thermal energy. In
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Figure 8. Temperature wall function (4.1, solid line) of George & Capp (1979) with constants
proposed by Versteegh & Nieuwstadt (1999) compared to data of Tsuji & Nagano (1988a) for
Grx = 3.62 × 1010 (�) and Grx = 8.44 × 1010 (�).

contrast to our study, however, they chose different characteristic temperatures (Tc,i

and Tc,o) and velocities (uc,i and uc,o) for the inner and outer layers, respectively.
Since their viscous sublayer profiles for the temperature and velocity are basically

the same as those we found (see (2.15) and (3.2)) we only compare profiles in the
overlap layer.

Due to the different non-dimensionalization of George & Capp (1979), matching
of the inner and outer layers leads to a different temperature profile compared to our
profile (2.12). Their temperature profile for the overlap layer is

Θ× = K2y
×−1/3 + A(Pr). (4.1)

At that time George & Capp (1979) were not able to give reliable values for their
constants. Therefore, K2 = −4.2 and A = 5.0 are used, which Versteegh & Nieuwstadt
(1999) determined by adjusting the profiles of George & Capp (1979) to their DNS
data. The wall function (4.1) deviates appreciably from the data of Tsuji & Nagano
(1988a), for example, see figure 8.

For the velocity in the overlap layer, they obtain a function†
U×

Pr
= K1 · y×1/3 + B(Pr) (4.2)

instead of our (3.10). Since K1 is a constant in their study (K1 = 27) all flows with the
same Prandtl number (B(Pr) fixed) are then represented by a single function U×(y×).

† George & Capp (1979) used a slightly different non-dimensionalization so that instead of
U× = u/uc the left-hand side is U×/Pr .



396 M. Hölling and H. Herwig

10–1 100 101 102 103
0

5

10

15

20

25

y×

U ×

(3.10)

(3.11)

(4.2)

Figure 9. Velocity wall function (4.2) of George & Capp (1979) compared to data of Tsuji &
Nagano (1988a) for Grx = 3.62 × 1010 (�) and Grx = 8.44 × 1010 (�), also shown: our velocity
profiles (3.11) in the viscous sublayer and (3.10) in the overlap layer.

Figure 9 shows two measured velocity profiles from Tsuji & Nagano (1988a), both
for Pr = 0.71: the profile (3.11) in the viscous sublayer and the velocity function (4.2)
by George & Capp (1979). Though (4.2) should cover the overlap layer it is only a
reasonable representation of the velocity profile for y× < 3. This near-wall region is
very well represented by the viscous sublayer velocity profile (3.11) already.

Very different from the profile (4.2), our overlap-layer profile (wall function) (3.10)
covers the y×-region 3 < y× < 200.

5. Conclusions
Based on asymptotic considerations for the near-wall region in turbulent natural

convection flows new analytical functions have been derived for the asymptotic
temperature and velocity profiles.

In determining constants by comparing the asymptotic profiles to measured data it
is crucial to take into account variable-property effects.

If this is done one obtains a general form for velocity and temperature profiles
that hold for all kinds of turbulent natural convection flows close to vertical walls.
Unlike previous attempts they can cover almost the whole boundary layer. They can
be incorporated in CFD codes to avoid the otherwise necessary fine grids close to the
wall when Grashof (or Rayleigh) numbers are high. Since then the numerical solution
does not reach the wall (the remaining distance is bridged by the wall functions)
it is advantageous to have wall function profiles that are based on bulk property
values (with the wall-property-value influence incorporated indirectly by the way its
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constants are determined from experimental data). Variable-property effects can also
explain deviations between DNS and experimental data often found in the literature.
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